Strengthening brain cells: Determining the failure of brain cell communication in Alzheimer's disease

Dr. Matthew Parsons Memorial University

TRENDS in Neurosciences

- Alzheimer disease is the world's most common
 neurodegenerative disease
- Replacing brain cells is a difficult task
- Before brain cells die, they lose their ability to communicate with each other
- What if we thought of AD as a brain cell communication disease instead? A synaptic degenerative disease?

How do brain cells communicate?

100 billion neurons!

100 trillion connections!

The brain under the microscope: The hippocampus

Barnes et al., 2020

Ravalia et al., 2020

The brain under the microscope: A single dendrite

Emily Hurley, PhD candidate

The brain under the microscope: A synapse

The brain under the microscope: A <mark>synapse</mark>

http://medcell.med.yale.edu/

The basic requirements for a synapse:

http://medcell.med.yale.edu/

The brain under the microscope: A synapse

Neurons are close talkers!

Width of the synaptic cleft: ~ 20 nm

Width of a single human hair: ~ 75,000 nm

A single synapse

There are 100 trillion of these!

Why so complicated? Why are all these proteins required?

Nature Reviews | Neuroscience

Why do we care about the synapse?

PET imaging of synaptic vesicle glycoprotein 2A ("hotter" colors means more synapses)

In AD, synapse loss represents the main correlate of cognitive decline!

How are synapses lost in AD, and how can we prevent it?

How does a synapse work?

The Goldilocks principle applied to glutamate (the words)

Toxicity, cell death, poor cognition
Rapid cell-to-cell communication; fast processing; network stability/flexibility; strong cognition
Poor information transfer, slow processing, synapse elimination poor cognition

What do we think is happening to these synapses in AD?

What we think is happening:

- In the AD brain, the sponges fail.
- Leads to the overactivation of receptors on the presynapse (the speaker)
- Makes the speaker think its speaking too loudly
- Responds by lowering its voice (releases less glutamate)
- Becomes a weak synapse that, if sustained, is eventually eliminated
- What evidence do we have to make us think this is happening???

Visualizing glutamate in real-time

- iGluSnFR (pronounced I-glue-sniffer)
- Green protein that lights up when it senses glutamate
- By introducing iGluSnFR into brain cells, we can tell how much glutamate is released and how long it stays around
- We have introduced iGluSnFR to either the speaker (presynapse) or the listener

(postsynapse) to see how glutamate is regulated in these areas.

Example video (in real time) of glutamate released onto a single dendrite

1/471 (Proj. 1); 287x100 pixels; 32-bit; 52MB

How do we do this in a human brain?

Hint: we don't...

Sense of scale: Stack 75 of these dendrites on top of each other to equal the width of a human hair

The 3xTg mouse model of AD

- These mice have three mutations linked to familial forms of AD
- Results in amyloid and tau pathology
- Exhibit synapse weakening over time and eventual synapse elimination
- Exhibit cognitive deficits
- One of the most commonly-used animal models of AD*

Glutamate levels are prolonged at the presynapse (speaker)

Ceftriaxone restores glutamate levels

Ceftriaxone: A FDA-approved antibiotic that is known to increase GLT-1 (the sponge) in the brain

What we think is happening:

- In the AD brain, the sponges fail.
- Leads to the overactivation of receptors on the presynapse (the speaker)
- Makes the speaker think its speaking too loudly
- Responds by lowering its voice (releases less glutamate)
- Becomes a weak synapse that, if sustained, is eventually eliminated

Is ceftriaxone the cure for AD? Unfortunately, likely not

- High concentrations required
- Ceftriaxone affects more than just the sponge: side effects
- BUT...it does provide us with a better <u>mechanistic understanding</u> of AD that opens up new research paths
- How does the sponge fail in AD and how can we protect them
- What are the exact receptor pools that are overactivated and how can we prevent this?
- Need for early identification! (e.g. PET scanning of SV2A)
- Caveat: of mouse models and the inability to study the same thing in living tissue in the human brain

Summary

- AD is a disease of the synapse
- Preventing synapse weakening and eventual elimination will likely prevent cognitive decline
- Therapeutic strategies that maintain strong synapses are likely be beneficial in AD and other dementias
- What is needed?
 - Earlier detection: Who is going to get AD?
 - More detailed understanding of synaptic failure in AD
 - Better bridges between mouse models and humans